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Proceedings of the Annual Acquisition Research Program 

The following article is taken as an excerpt from the proceedings of the annual 

Acquisition Research Program.  This annual event showcases the research projects 

funded through the Acquisition Research Program at the Graduate School of Business 

and Public Policy at the Naval Postgraduate School.  Featuring keynote speakers, 

plenary panels, multiple panel sessions, a student research poster show and social 

events, the Annual Acquisition Research Symposium offers a candid environment 

where high-ranking Department of Defense (DoD) officials, industry officials, 

accomplished faculty and military students are encouraged to collaborate on finding 

applicable solutions to the challenges facing acquisition policies and processes within 

the DoD today.  By jointly and publicly questioning the norms of industry and academia, 

the resulting research benefits from myriad perspectives and collaborations which can 

identify better solutions and practices in acquisition, contract, financial, logistics and 

program management. 

For further information regarding the Acquisition Research Program, electronic 

copies of additional research, or to learn more about becoming a sponsor, please visit 

our program website at: 

www.acquistionresearch.org  

For further information on or to register for the next Acquisition Research 

Symposium during the third week of May, please visit our conference website at: 

www.researchsymposium.org 
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A Non-simulation Based Method for Inducing Pearson’s 
Correlation between Input Random Variables 
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Abstract  
Several previously published papers have cited the need to include correlation in risk-

analysis models. In particular, a landmark paper published by Philip Lurie and Matthew 
Goldberg presented a methodology for inducing Pearson’s correlation between 
input/independent random variables. The one subject, absent from the paper, was a 
methodology for finding the optimal applied correlation matrix given a desired outcome 
correlation. Since the publishing of the Lurie-Goldberg paper, there has been continuing 
discussion on its implementation; however, there has not been any presentation of an 
optimization algorithm that does not involve the use of computing-heavy simulations. This paper 
reviews the general methodology used by Lurie and Goldberg (along with its predecessor 
papers) and presents a non-simulation approach to finding the optimal input correlation matrix, 
given a set of marginal distributions and a desired correlation matrix. 

Introduction 
The Complete Correlation Algorithm (CCA) developed by Northrop Grumman and 

recently implemented in NG developed risk models is a product of more than two years of 
research and development. Several previously published papers have cited the need to include 
correlation in risk-analysis models; however, none present an optimization algorithm that does 
not involve the use of computing-heavy simulations. In particular, a landmark paper published 
by Philip Lurie and Matthew Goldberg (1998) presented a methodology for inducing Pearson’s 
correlation between input random variables. This paper reviews the general methodology used 
by Lurie and Goldberg (along with its predecessor papers) and presents the Druker Algorithm: a 
non-simulation approach to finding the optimal input correlation matrix given a set of marginal 
distributions and a desired correlation matrix. 

The CCA was deliberately created bearing in mind identified environmental factors that 
prevent easy implementation of commercially available models. No one on the team had any 
experience implementing correlation into Monte Carlo simulations beyond the use of COTS 
programs, such as @Risk™ and Crystal Ball™. To determine the best development method, 
the following factors were considered:  

1. The Northrop Grumman risk models need to be of an easily transferable electronic size, 
as the models are often shared via email or network drives. 

2. A diverse group of users must be able to run the software in a variety of work 
environments; Microsoft Office is the only platform that is transferable to all parties. 
Users include risk practitioners, program managers and members of pricing 
organizations; locations include unclassified and classified Northrop Grumman facilities, 
unclassified and classified customer facilities and home offices.  
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3. Custom implementations are frequent; much of NGIT-TASC risk work requires risk 
simulations to be built into pre-existing cost and price models. These models are 
generally limited to Microsoft Excel and Access; however, Web-based platforms are not 
unheard of. 

The above concerns drove the decision to use Visual Basic source code to develop the CCA.  

Initially, the development was focused on an algorithm that could induce Pearson’s 
correlation between typical distributions in risk analysis: Bernoulli (discrete), Triangular, Normal 
and Log-Normal. By limiting the problem to the most-common applications, in theory, the 
solution should have been easier to find. While attempting to ascertain the maximum correlation 
between any two Bernoulli distributions, however, the general solution was uncovered. The 
resulting algorithm induces Pearson’s correlation between any set of random variables (while 
still preserving the marginal distributions) using the Lurie-Goldberg Method and without the use 
of simulation to find the optimal applied correlation matrix.   

The CCA is a compilation of multiple algorithms (each named for their main author(s)) 
from several sources: existing papers, public source code and internally-developed code. Most 
of the algorithms used were taken from a variety of existing papers. Although these papers all 
provided complete algorithms, they sometimes lacked details in how to accomplish key steps; in 
cases such as these, gaps were filled with open-source code solutions. The optimization of the 
applied correlation matrix, the last step in the correlation algorithm, was developed entirely by 
the Northrop Grumman Team.  

Definitions and Assumptions 

Matrix Definitions:  
1. Consistent Correlation Matrix—Consistent Correlation matrices have diagonal entries 

equal to 1.0, all other entries between [-1, 1] are symmetric and positive definite. 
Consistency is necessary for a viable correlation matrix, but a Consistent Correlation 
Matrix may not necessarily be viable given the Parent Distributions. 

2. Input Correlation Matrix (I)—The user-inputted correlation matrix. This matrix may or 
may not be a consistent correlation matrix.  

3. Adjusted Correlation Matrix (L)—The Input Correlation Matrix adjusted to be a 
Consistent Correlation Matrix. This matrix will, by definition, be positive definite. 
Additionally, the adjusted matrix will be viable as correlations between various 
distributions of random variables will be achievable. When (L) is generated, the 
differences between (I) and (L) are minimized.  

4. Applied Correlation Matrix (A)—The correlation matrix used by the grand algorithm to 
generate correlated random number draws. This matrix may be the same, or very 
different from, the Adjusted Correlation Matrix; the extent of the differences will 
depend on the random variables to be correlated. 

5. Optimal Applied Correlation Matrix (A’)—The Applied Correlation Matrix optimized 
using the Lurie-Goldberg Method.  

6. Outcome Correlation Matrix (O)—The correlation matrix of the simulated variables 
following the simulation run. The goal of the grant correlation algorithm is for (O) to be 
identical to (L). 
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Other Definitions: 
1. Parent Distribution—The distributions correlated for use in the simulation. The 

distributions are simulated using the Inverse CDF technique. The goal is to induce a 
desired correlation between these distributions. 

2. Pearson’s Correlation—A parametric statistic that measures the strength and direction 
of a linear relationship between two random variables (“Correlation,” 2008). 

3. Spearman’s Rank Correlation—A non-parametric statistic that measures the 
monotonicity of a function without making any assumptions as to the distribution of the 
variables. 

4. Eigenvalues—A scalar (L) associated with a matrix such that if (A) is a matrix and (X) is 
a vector, AX = LX. The vector (X) is known as the Eigenvector that corresponds to the 
Eigenvalue (L).  

Assumptions: 
1. Normal Distributions—Any reference to the normal distribution, whether in a univariate 

or bivariate case, is assumed to be the Standard Normal distribution (Mean of 0, 
Standard Deviation of 1).  

Pearson’s vs. Rank Correlation 
Most COTS risk tools use Spearman’s rank correlation as a substitute for Pearson’s 

correlation between parent distributions. Spearman’s rank correlation (a non-parametric 
statistic) differs from Pearson’s correlation (a parametric statistic) in that it measures the 
monotony of a function, whereas Pearson’s correlation measures the strength of the linear 
relationship between two functions (see Figure 1). Though studies have shown that, using the 
most common risk distributions, models using rank correlation yield similar results to those 
using Pearson’s (Robinson & Salls, 2004), there is a distinct difference between the two. 
Although this paper will not detail all the differences between the two measures, a quick (and 
exaggerated) example is presented below. The grand algorithm supersedes the need to 
substitute for Pearson’s correlation with Spearman’s rank correlation.  
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Figure 1. Pearson's vs. Spearman's Rank Correlation 

Algorithm Overview 
There are three main steps behind the grand algorithm. An outline of these steps 

follows, and the upcoming sections of this paper will review each individual step in detail.  

1. Correct the User-Input Correlation Matrix (I)  
a. Correct I so that it is consistent—both in terms of a general correlation matrix and 

the properties of the parent distributions being correlated.  

b. Through these corrections, the Adjusted Correlation Matrix (L) will be generated. 

2. Optimize the Applied Correlation Matrix  

a. Find the Optimal Applied Correlation Matrix (A’) such that when A’ is run 
through the Lurie-Goldberg Method, the Outcome Correlation Matrix (O) is 
identical to L. 

3. Correlate the Input Random Variables 

a. Using A’, apply the Lurie-Goldberg Method to correlate the parent distributions. 

For purposes of presenting the methodology, it is necessary to show how the input 
random variables are to be correlated before discussing how to find A’. 

Correcting the User-Input Correlation Matrix (Part I) 
Giving users the ability to input their own correlation matrix allows for the possibility that 

the User-Input Correlation Matrix (I) may not be a viable correlation matrix. Correlation 
matrices, by definition, have diagonal entries of 1.0. All other entries between [-1, 1] are 
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symmetric and are positive definite. The first step in inducing correlation between input random 
variables is checking whether I is a consistent correlation matrix. If it is not, it must be corrected 
that it is such.  

The Iman-Davenport Algorithm, which is based on a paper by Ronald Iman and James 
Davenport (1982) is used to correct I in order to make it a consistent correlation matrix. While 
numerous other papers have been published describing methods to correct I such that it is 
altered as little as possible (Higham, 2002), the Iman-Davenport Algorithm is the most 
computationally efficient method the authors uncovered.  Given that additional adjustment may 
be required based on the parent distributions being correlated; the resulting matrix is close 
enough to I to satisfy this requirement. 

The algorithm corrects I in three main phases. First, the algorithm checks whether I is 
symmetric with diagonal entries of 1.0 and off-diagonal entries between [-1, 1]. If it is not, the 
user is prompted to re-input the matrix, correcting for the discrepancies.  

Second, once the above conditions are satisfied, the algorithm checks whether I is 
positive-definite. One way to test this is to find the eigenvalues for I (positive-definite matrices 
have all positive eigenvalues).  The paper referenced did not describe an approach for finding 
the eigenvalues of the matrix. After further research, the Jacobi Eigenvalue Algorithm was 
determined to be a sufficiently efficient way to evaluate a matrix’s eigenvalues. As a result, the 
eigenvalues are produced as the diagonals of an otherwise zero-matrix. The Jacobi Eigenvalue 
Algorithm is computationally inexpensive and pre-existing source code was used in its 
implementation. 

If all eigenvalues for I are positive and the other conditions have been satisfied, then I is 
a consistent correlation matrix. Otherwise, in the third phase, negative eigenvalues are changed 
to small, positive values (e.g., .000001). The diagonal matrix of adjusted eigenvalues is then 
multiplied by the associated matrix of eigenvectors (also produced using the Jacobi Eigenvalue 
Algorithm). That product is, in turn, multiplied by the inverse of the matrix of eigenvectors to 
arrive at a new matrix that is similar, but not equal to, I. Lastly, the diagonals are reset to 1.0 as 
they may have changed during the transformation. This third section of the algorithm is repeated 
until all eigenvectors of the adjusted matrix are positive. At this point, the user input matrix has 
been adjusted such that it is a consistent correlation matrix. 

Though the User-Input Correlation Matrix is now a consistent correlation matrix, the 
transformation of I is not complete and the Adjusted Correlation Matrix (L) has not been 
determined.  As will be shown later, depending on the parent distributions being correlated, 
there may be a maximum achievable correlation between any two of the variables. 
Determination of L will be covered later in the section: Correcting the User-Input Correlation 
Matrix (Part II). 

Correlating Input Random Variables 
In order to understand how the Applied Correlation Matrix (A) is to be optimized such 

that the Output Correlation Matrix (O) is identical to the Adjusted Correlation Matrix (L), the 
method for correlating the parent distributions must first be discussed. It is a well-known fact 
that normal random variables can be correlated by multiplying a vector of uncorrelated normal 
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random draws by the Cholesky decomposition1 of the desired correlation matrix. The Lurie-
Goldberg Method takes this one step further using normal random variates to generate 
correlated uniform random variates. These uniform random variates are then transformed via 
the inverse-CDF technique to generate draws from the desired parent distributions. In this 
method, although the correlations between the normal random draws are known, as these 
draws are transformed into other distributions, the correlations change. Hence, the core problem 
emerges: how can the Optimal Applied Correlation Matrix (A’) be uncovered such that O 
matches L? Answering this question is key to implementing the Lurie-Goldberg Method. The 
authors have developed an algorithm that addresses this very question, without necessitating 
any runs of the simulation. Additionally, they have begun the process of optimizing this 
algorithm, finding heuristics that allow it to run with a minimal number of calculations. 

Implementation and Application of the CCA 
The CCA’s chief advantage is that it is non-recurring and its implementation requires no 

simulation. Furthermore, because the algorithm only requires looking at pairs of parent 
distributions, once the applied matrix has been found for a set of parent distributions, the 
algorithm must only be run when distributions are added or changed, and even then, only for the 
new/altered distributions. The algorithm also uses Pearson’s correlation while COTS risk tools 
substitute Spearman’s rank correlation. 

The applications of the CCA reach beyond the Cost and Risk analysis community; this 
algorithm is useful anywhere there is a need to induce Pearson’s correlation between input 
variables. For example, this algorithm can applied to auto correlating, stock market projections 
in the financial arena and to traditional modeling and simulation situations when correlation is 
needed. The algorithm was designed with a focus on portability. Because algorithm is coded 
with Visual Basic, it can be easily integrated in existing tools and models.  
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1 The Cholesky Decomposition Matrix of any matrix M is L such that M = LLT 
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